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We establish a formal similarity between a neural network with random synaptic background activity
and a physical system in a heat bath. We then use techniques from nonequilibrium statistical physics to
evaluate the average linear response of a lateral inhibitory network in a random background. We show
how averaging over the background leads to nontrivial frequency-dependent modifications in network

response.

PACS number(s): 87.10.+e¢, 02.50.—r, 05.20.—y

I. INTRODUCTION

A number of recent experimental studies have estab-
lished that background synaptic activity can influence the
behavior of cortical neurons [1-3]. The underlying
mechanism is due to shunting, that is, increases in the
conductance of synapses induced by such activity leads to
local changes in the membrane time constant [4]; this
holds for both inhibitory and excitatory synapses.
Indeed, variations in the level of background activity can
reduce the effective time constant 7 by a factor of 10.
This has a number of important consequences:

(i) For small values of 7, a neuron tends to act like a
coincidence detector whereas for larger values it per-
forms the role of a temporal integrator. Thus back-
ground activity could selectively determine the particular
mode of operation carried out by a neuron.

(ii) Spatially nonuniform patterns of background activi-
ty impinging on the dendritic tree of a neuron results in a
corresponding nonuniform modulation of the local mem-
brane time constant of the tree. This could, for example,
influence the effectiveness of distal dendrites at certain lo-
cations to affect events at the cell body or soma [1].

(iii) In the presence of constant inputs, reduction in the
membrane time constant due to background activity
leads to a corresponding reduction in the steady-state
membrane potential of a neuron, which in turn produces
a lower firing rate [5].

(iv) Random synaptic background activity is a source
of multiplicative noise.

In this paper, we use techniques from nonequilibrium
statistical physics to analyze the effects of multiplicative
noise arising from synaptic background activity (point iv)
on spatiotemporal processing in lateral inhibitory net-
works. We begin by considering a single leaky-integrator
neuron with background activity modeled as a multicom-
ponent dichotomous colored noise process (Sec. IT). Solv-
ing for the membrane potential using a variation of pa-
rameters formula and averaging over the background
leads to a quantity analogous to the relaxation function of
a randomly modulated oscillator [6]. Following Refs.
[7,8], we calculate the average response of the neuron us-
ing the time convolution generalized master equation for-
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mulation [9] and the method of partial cumulants [10,11].
We find that in the case of a constant external input, a
fluctuating background leads to a smaller reduction in
the membrane time constant than a constant background
of the same average intensity. We also analyze the
neuron’s average response to sinusoidal inputs. The fluc-
tuating background now results in a frequency-dependent
modification in the effective membrane time constant
leading to nontrivial changes in both the phase and am-
plitude of response. We show how this affects the tem-
poral low-pass filtering properties of a leaky-integrator
neuron.

Having discussed the single-neuron case, we then turn
to spatiotemporal processing in lateral inhibitory net-
works (LIN’s). These networks have been studied in a
range of biological systems, particularly those concerned
with sensory perception. Examples are the Limulus com-
pound eye [12], the mammalian retina [13,14], the soma-
tosensory system [15], and the auditory system [16]. In
most of these systems, lateral inhibition serves to sharpen
spatial input patterns, that is, highlighting edges and
peaks. When nonlinearities associated with the firing
mechanism of a neuron are included lateral inhibitory
networks can exhibit more complex behavior such as hys-
teresis phenomena and pattern formation [17,18]. In this
paper, however, we concentrate on linear models since
this allows us to carry over the analysis of the single-
neuron case. It should also be noted that the linear ap-
proximation is reasonable when the amplitude of the
sinusoidal inputs is small.

For simplicity we consider a one-dimensional LIN in
which lateral connections depend on the spatial separa-
tion of the pair of neurons concerned. We also neglect
edge effects by taking the network to be of infinite extent.
(Note that the one-dimensional case is appropriate when
studying the auditory system where at least in the more
peripheral regions one has a one-dimensional tonotopic
map [16]. One could easily extend the analysis to the
two-dimensional case as needed in the retinal system.)
We first assume that the background is uniform across
the network (Sec. III). This implies that we can take a
Fourier transform with respect to the spatial coordinate
thus transforming the network into an (infinite) set of in-
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dependent leaky-integrator neurons labeled by the spatial
frequency. The effect of the background on each of these
can be analyzed as before. However, we find an impor-
tant difference between recurrent and nonrecurrent LIN
topologies [12,16]. In the latter case the spatial and tem-
poral components of network response are decoupled so
that in particular the effective membrane time constant
arising from the background is independent of the spatial
frequency. This is no longer true for the recurrent net-
work where spatial and temporal components are strong-
ly coupled. We investigate how the random background
affects the high-pass spatial filtering properties of lateral
inhibitory networks, particularly those with recurrent to-
pologies.

Finally, we consider a nonuniform background in
which each neuron is modulated by an independent
colored noise process (Sec. IV). The linear response func-
tion of the network now takes the form of a time-ordered
exponential matrix operator. This is formally similar to
an operator obtained in the analysis of excitons moving
along a one-dimensional lattice with random modulations
of the local energy at each site [19,7]. Exploiting this
similarity, we use a dynamical version of the coherent po-
tential approximation [19] to reduce the network with
nonuniform stochastic background to one with an
effective uniform time-independent background. This re-
sults in a self-consistency condition for the effective back-
ground that involves the average response function of a
LIN with random fluctuations at a single node of the net-
work (single-site dynamical disorder). This response
function is calculated using an extension of the method of
partial cumulants applied to the single-neuron model.

II. LEAKY-INTEGRATOR NEURON IN A STOCHASTIC
BACKGROUND

The dynamics of a leaky-integrator neuron may be de-
scribed by the equation
Lyn=-L

(e) _
- E@[S9—V(1)]

+I[SP—V()], 2.1)

where 7 is the membrane time constant, V is the (somatic)
membrane potential, E and I are the rates of excitatory
and inhibitory input stimulation, and .S 0§ are the as-
sociated membrane reversal potentials with S€>0,
S§'<0. Note that 7=RC where R and C are, respective-
ly, the leakage resistance and capacitance of the neuron.
It follows immediately from Eq. (2.1) that both excitatory
and inhibitory inputs reduce the effective membrane time
constant according to 7 '—7 !4+ E(#)+1(t). (More
precisely, the conductance changes induced by synaptic
inputs reduce the effective leakage resistance R and hence
7.) A well-known consequence of this so-called shunting
effect is that it leads to a compression of the dynamical
range of a neuron. To illustrate this, assume that E and 1
are time independent; the steady-state membrane poten-
tial is then

pr= Es(e)+Is(i)

— : 22)
T E+T
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Thus, rather than V* increasing linearly with E (for fixed
D), one finds that ¥*—S(® as E— «. The nonlinear re-
lationship in Eq. (2.2) helps to explain the Weber-Fechner
law of retinal processing [20]. Moreover, its generaliza-
tion to the case of neurons with dendritic structure pro-
vides a mechanism whereby recurrent networks can sus-
tain states of firing well below the maximum possible
firing rate of a neuron [4,21].

Equation (2.2) also illustrates another important
feature. Suppose that I is taken to represent background
shunting inhibition with Sh=0. Then
V*=ES'9/(E+I+7"1), ie., the background does not
directly contribute to the input stimulation of the neuron,
but does affect the neuron’s behavior indirectly by reduc-
ing the membrane time constant. In this paper, we shall
analyze the consequences of such an effect when there ex-
ists a fluctuating background. As a first step, consider a
leaky-integrator neuron satisfying

av _ V@)

dt T
where X (¢) is the net input stimulation of the neuron and
the last term on the right-hand side represents back-
ground synaptic activity in the form of shunting inhibi-
tion. The background is decomposed into a constant
component &, and a stochastic (zero mean) component
£(2). The latter is taken to be a multicomponent dichoto-
mous colored noise process. That is, §(t)=2ﬁ’=1§(’”(t)
where each £#)t) is a stationary dichotomous colored
noise process and the composed process is determined
completely in terms of the first and second moments

(gW(t))y=0,
(EW(DEM(2")) =8,,,v%exp(—Alt—1']) .

+X(t)—[E+HEDIV (1), (2.3)

(2.4)

Here ( ) denotes averaging over the stochastic process, ¥
is the strength of the background fluctuations, and A ™! is
the correlation time. One can view the composed process
£(2) as jumping between the values ty+, y+-- -y (M
terms) so reflecting different levels of background activi-
ty. Since the rate of inhibition is a positive number, we
require that £,+£&(¢#)=0. This leads to the condition
My =<§, As a final simplification, we assume that the
stochastic background is independent of the input X (¢).
Equation (2.3) is an example of a stochastic differential
equation with multiplicative colored noise. A full
analysis of such equations is generally not possible and
one usually has to resort to taking a white-noise limit, for
example, so that a Fokker-Planck equation can be con-
structed. Here, however, we are only concerned with
determining the average response of the neuron; this can
be calculated exactly. Thus we imagine that there is an
ensemble or population of N identical, independent neu-
rons operating in approximately a linear regime so that
the average output of the population is N{ ¥ (¢)). First,
we integrate Eq. (2.3) under the initial condition ¥ (0)=0

and average over the stochastic process. The result is
(V)= [HeXt—tdr' 2.5)

where
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H(:)=exp<-ez><exp [—fJg(f)dr’]) 2.6)
and e=7"'4+&, Taking the Laplace transform of Eq.
(2.5) gives

v(z)=h(z)x(z), 2.7

where h(z), v(z), and x (z) are, respectively, the Laplace
transform of H(t), { ¥V (t)), and the input X (¢). For con-
stant inputs, X(¢)=X,, the average steady state is
h(0)X,. On the other hand, for sinusoidal inputs of an-
gular frequency ® the associated transfer function is
hliw).

The average response function H (¢) is formally similar
to the so-called relaxation function of a randomly modu-
lated oscillator [6]. The latter is one of the simplest ex-
amples of a physical system interacting with a heat bath.
Once the formal connection between a neuron with ran-
dom synaptic background activity and a system in a heat
bath has been made, it follows that the various techniques
used to study the latter can also be applied to the former
with only minor alterations. (Of course the interpretation
of the results will differ considerably in the two cases.) In
particular we can calculate h(z) using the time-
convolution generalized master equation (TC-GME) ap-
proach [9] combined with the method of partial cumu-
lants [10].

Consider the stochastic differential equation

dG

o [e+&()]G (1),
We proceed by averaging Eq. (2.8) over the stochastic
process without first solving it; this naturally leads to the
partial cumulants, which can be calculated explicitly. To
achieve the averaging procedure, it is convenient to intro-
duce the projection operator 7, which averages everything
to the right of it and to let L=1—7?. By definition
H (t)=2PG (t). The vanishing of the first moment in Eq.
(2.4) implies that P&(¢)P=0. Acting from the right on
both sides of Eq. (2.8) with the operator ? or .L, we ob-
tain the two equations

G(0)=0. (2.8)

%?G(z)=—e?’G(t)—‘Pg‘(t),[lG(t) (2.9)

and
%LG(I)= —{e+LER)}LG(t)—E)PG(2) . (2.10)
Solving for the quantity LG (¢) by integrating Eq. (2.10)

and using G(0)=0, we obtain the integro-differential
equation (scalar TC-GME),

L g (=—eH(0+ ['Kt—t)H@Hdr,  @.11)
dt 0

where K is the so-called memory operator

K ()=Pg(t)exp (= [ 'le+LeGN1dr’ ]§<o>,. (2.12)

Expanding the exponential in Eq. (2.12), which effectively
corresponds to a power series expansion in the back-
ground strength y, we obtain the result
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0 t
K= fotdtz,,_z... fozdtlc(z"’(o,tl,...,t2n_2,t),
n=1

(2.13)

where the c‘z”’(O,tl, ...,t), n=1,2,... are the partial

cumulants for the stochastic process £(¢),
(0,21, .. tyy —ast)

=PE(LE(Ly, )L -+ - LEt)LEO) .  (2.14)

Note that all partial cumulants of odd order are zero due
to the fact that the stochastic process has zero mean.

The partial cumulants for dichotomous colored noise
are calculated in Ref. [11] using diagrammatic tech-
niques. It turns out that ¢?" displays a multiconvolution
form involving the temporal differences
=t—t_i=1,...,2n—1 (with t;=0,t,, _,=t).
Therefore, we can Laplace transform Eq. (2.13) and after
some rearrangement express the Laplace transform k (z)
of K (t) as a continued fraction

o

k(z)= 26M ,
z+et+Ar—

Y

. —y20M(z+e+MA)
(2.15)

where A ™! is the correlation time and 0¥ =k (M +1—k).
Note that the continued fraction can be rewritten in the
standard form

29M
3
z+e+2A—=

— , (2.16)
a;+ ]
A
ay
where
@ =b(z+etkd), by=——i—— b =—l_
Ok v br 4 y°0q

(2.17)

It is clear that {b,,b,,..,b,} forms an alternating se-
quence. This differs from the analogous expression for
the randomly modulated oscillator where the b, are all
positive. The presence of an alternating sequence means
that k (z) can have singularities when z is real. However,
these singularities will be absent in our model provided
the Rez > —¢,, which reflects the dissipative nature of
the underlying neuron model. This also implies that for
real z, k(z)>0 if z> —&,; k(z) is then a monotonically
decreasing function of z.

Having obtained the Laplace transform of the memory
function, we can now proceed to solve Eq. (2.11). La-
place transforming both sides of Eq. (2.11) gives

1

W= e v

(2.18)
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First, consider the case of a constant input X (#)=X,.
Setting z =0 in Eq. (2.18), it can be seen that the net
effect of the background is to modify the membrane time
constant according to

1 1l ek,

T T

(2.19)

Thus averaging over the stochastic background contribu-
tion £(t¢) results in a smaller reduction in 7 than a con-
stant background of the same average intensity. Also
note that k (0) increases with the order M of the dichoto-
mous noise process provided that the condition My <§,
is not violated.

Next consider the response to sinusoidal inputs.
Averaging over the fluctuating background now results in
a frequency-dependent contribution to the average
transfer function, which leads to nontrivial modifications
in both the phase and amplitude of response. This is il-
lustrated in Figs. 1 and 2 where we have plotted
P(w)=|h(iw)|? and 8(w)=argh(iw) against frequency o
for single component dichotomous noise. Setting M =1
in Eq. (2.15) gives the transfer function

1
etio—yietio+A)" !’

We consider the two cases (a) y =0 (zero fluctuations)
and (b) y =0.7. We also set e=1 and A=0 (static limit).
It can be seen from Fig. 1 that the leaky-integrator neu-
ron acts like a low-pass filter. The random background
modifies the response in two ways. First, the maximum
response (at @ =0) increases with ¥ as a consequence of
the transformation (2.19). Second, the frequency depen-
dence of the effective background leads to a narrowing of
the response curve as can be seen by comparing curve (b)
in Fig. 1 with the dashed curve; the latter describes the
response of the neuron with frequency-independent back-
ground activity §,—k(0). The combination of these two
features gives a more sharply tuned low-pass filter. Simi-
lar conclusions can be drawn from the phase plot of Fig.
2. Similar behavior to Figs. 1 and 2 occurs for multicom-
ponent dichotomous noise (M > 1). Finally, as one might
expect, the influence of the fluctuating background £&(z)

hlio)=

(2.20)

0 1 2 3 4

FIG. 1. Average response of a leaky-integrator neuron in a
stochastic background: plot of intensity P(w) against frequency
o for (a) y =0 (zero background) and (b) ¥y=0.7. The dashed
curve shows the response due to a frequency-independent back-
ground contribution £,— k(0).
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FIG. 2. Average response of a leaky-integrator neuron in a
stochastic background: plot of phase 6(w) against frequency w
for (a) y =0 and (b) y =0.7. The dashed curve constructed as in
Fig. 1.

decreases as the correlation time decreases. In the limit
A—0 the noise process becomes completely incoherent
and gives zero contribution to the average response.

III. LATERAL INHIBITORY NETWORKS
IN A UNIFORM BACKGROUND

As discussed by Hartline [12] and Shamma [16], there
are two types of topological arrangement for LIN’s.
These are illustrated in Figs. 3 and 4 for a one-
dimensional network. For simplicity we shall consider
linear models for which the output firing rate f of each
neuron is of the form f(¢)=kV(t), where k is some con-
stant. In the case of a nonrecurrent network, the input
X, (1) to the nth neuron inhibits the other neurons m+n
along weights W . Thus

av, V(@
dr T

+X, ()= S Wy X, (1),

m¥*n

(3.1

where ¥V, (¢) is the membrane potential of the nth neuron
and 7=RC with the membrane resistance and capaci-
tance assumed to be n independent. [Note that CX,(¢)
has the units of current.] On the other hand, a recurrent
network employs inhibitory feedback,

av, V(1)
dr T

=3 W V() +X,(1) . (3.2)

m¥#*n

In Eq. (3.2), the factor k relating membrane potential to

Xn-1 Xn Xn+1

FIG. 3. Nonrecurrent lateral inhibitory network.
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firing rate has been absorbed into the weights W,,,. We
assume that for both topologies the weights W,,, depend
on the distance of separation between the pair (mn) and
are symmetric. In other words,

Wom=Wim—n)=W(n—m) . (3.3)

The network is also taken to be of infinite extent so that
end effects can be ignored. One subtle difference between
the two types of network concerns the units of the
weights W,,,,. That is, W,,, is dimensionless for the non-
recurrent topology whereas it has the units of sec™! in
the recurrent case.

Fourier transforming Eqgs. (3.1) and (3.2) with respect

to the spatial coordinate gives

ch(z't’t) - %+W(P) V(p,t)+X(p.t), recurrent,
(3.4)

ﬂ%ﬁl:_%V(p,t)+[l—W(p)]X(P,t) ;

nonrecurrent  (3.5)

with
Vip)=T3 eV, , W(p)=T e?W(n). (3.6)

Thus the network reduces to an (infinite) set of indepen-
dent leaky-integrator neurons labeled by the spatial fre-
quency p. The transfer function of the network is ob-
tained by Laplace transforming Egs. (3.4) and (3.5) with
respect to time ¢,

1
hglz,p)=——7—, 3.7
r(2:P) z+r7 1+ Wi(p) 3.7)
hg(z,p)=——B) (3.8)
z+T

If temporal variations in the input are slow relative to the
time constant 7 then the temporal dependence of the LIN
output can be approximately ignored; to a first approxi-
mation one can set z =0 in Egs. (3.7) and (3.8). Based on
physiological findings [12], the weight distribution W (n)
can be taken as a slowly decreasing function of n. We
shall assume for concreteness that the Fourier transform

Wn-1,n Wntin

Xn-1 Xn Xn+1

FIG. 4. Recurrent lateral inhibitory network.

is W(p)=Wyexp(—p?). This produces for a recurrent
network a transfer function A (0,p) of the form illustrat-
ed in Fig. 5 for W;=0.5, r=1. We see that the network
performs a spatial high-pass filtering operation on the in-
put; this corresponds functionally to the sharpening of
the steady-state input patterns as mentioned in the Intro-
duction. Similar behavior is exhibited by the nonre-
current architecture.

However, differences emerge between the two types of
LIN in the presence of temporal variations of the input.
In the nonrecurrent case, temporal and spatial com-
ponents are decoupled with the former consisting of a
low-pass filter. That is, patterns oscillating at high tem-
poral frequencies ( >>1/7) are severely attenuated. On
the other hand, there is strong coupling between tem-
poral and spatial components in the recurrent LIN as can
be seen by rewriting Eq. (3.7) as

1 T
ioTg+1 1+7W(p) ’

. T
hlie.p)= T W)

(3.9)

The effective time constant of the low-pass filter 7. de-
pends on W(p). For higher spatial frequencies,
W (p)—0, so that the time constant 7.4 increases and
there is a greater attenuation of high temporal frequency
oscillations.

The above difference between recurrent and nonre-
current networks is important when one introduces sto-
chastic background activity along the lines of Sec. II.
Assume for the moment that the background is spatially
uniform. (See Sec. IV for an analysis of a nonuniform
background.) That is, an additional term is introduced
on the right-hand side of Egs. (3.1) and (3.2) given by
—[&,+ &)1V, (¢). Since the background is uniform we
can still take the spatial Fourier transform. This reduces
the LIN an equivalent set of independent leaky-integrator
neurons each of which is in a stochastic background.
Since the spatial and temporal parts are decoupled in the
nonrecurrent case, the analysis of Sec. II gives the result
that the average transfer function is

1—W(p)

zte—k(z) (.10

hxr(z,p)=

1
hr(0,p)
0.9

)

0 0.5 1 1.5 2 2.5 3

FIG. 5. Spatial transfer function Ay (0,p) against frequency p
for a recurrent LIN with zero background fluctuations. The in-
set is the Fourier transform of the inhibitory feedback weight
distribution.
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The contribution k (z) from the stochastic background is
p independent. On the other hand, the average transfer
function for a recurrent LIN is

1
z+e+W(p)—k(z+W(p)) ’

where k (z) is defined by Eq. (2.15).

The spatial transfer function AR (0,p) of a recurrent
LIN is plotted in Fig. 6 for a range of background inten-
sities . We have taken M =1, e=1, A=0, and W;,=0.5.
It can be seen that the fluctuating background leads to an
enhancement of the spatial high-pass filtering properties
of the network. Comparing the high- and low-frequency
response using Egs. (3.11) and (2.15) shows that for

hg(z,p)= (3.11)

M=1
1
hg(0,0)= 5 ,
e+Wy—y/(e+W,)
1 (3.12)
hg(0, 0 )=——5—.
R 0 e—yi/e

If W, is sufficiently large, the y-dependent correction to
the low-frequency response is small, Ag(0,0)=(e
+W,)"! for all y. On the other hand, the high-
frequency response is greatly enhanced as y increases
from zero. This degree of enhancement would not be ob-
tained by changes in the level of constant background ac-
tivity &,. [There would also need to occur changes in the
weight distribution W (p).] Similar behavior is found in
the case of a nonrecurrent LIN. Equation (3.10) implies
that hyg(0, 0 )=hg(0,0). If e+ W, <1 then hygz(0,0)
>hg(0,0) for all y. If e+Wy>1 then hyg(0,0)
<hg(0,0) for y =0 and there exists a critical value y,
such that hyg (0, 00 ) > hg (0, ) for ¥ >y, where

- ele+Wy)Wyle+Wy—1)
Ve Wo(e+1)

(3.13)

Thus for large values of y the degree of contrast between
high- and low-frequency response can be considerably
smaller for a nonrecurrent network. This is illustrated in
Fig. 7 for the same parameter values as used in Fig. 6.

FIG. 6. Spatial transfer function A (0,p) of a recurrent LIN
in a uniform background for a range of values of background in-
tensity . The dashed curve corresponds to zero background
(y=0).
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3
hrO.p),

FIG. 7. Comparison of spatial frequency response of re-
current (solid curve) and nonrecurrent (dashed curve) LIN’s for
(a) y=0.0 and (b) ¥y =0.8.

IV. LATERAL INHIBITORY NETWORK
IN A NONUNIFORM BACKGROUND

Suppose that each neuron n of a recurrent LIN in-
dependently receives synaptic background activity such
that

dv, V,

= I W+ X,

—[&TE (DY, (D),

m¥*n

4.1

where each £,(¢) is a multicomponent dichotomous
colored noise process with

(£M))=0,
(EUADED(1')) =8, 8"y exp( —Alt —1'])

and the weights W,,, satisfy Eq. (3.3). In contrast with
the uniform background case, it is no longer possible to
Fourier transform Eq. (4.1) directly to obtain a single-
neuron model; this is due to the presence of the term
—§&,,()V,,(¢). Formally integrating Eq. (4.1) gives [with
V,,(0)=0 for all m]

4.2)

vV, ()= fo‘zcmn(t,t')xn(t')dz' , @.3)
n
where the response matrix G satisfies
%G(t,0)=—Q(t)G(z,O) , G(0,0)=1. (4.4)
Here
QN=QV+QV(1), Q=€ +W,, ,
4.5)
o () =6 ()8,
Solving Eq. (4.4),
G(,)=T [exp [~ ['Qu™ar” | | , 4.6)
.

where T is the time-ordering operator. Note that the
response matrix G(¢,t’) does not simply depend on the
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time difference ¢t —¢’. However, time-translation invari-
ance is recovered on averaging over the stochastic pro-
cesses £,,(t) since the latter are generated by a stationary
process. Thus we can define an averaged response matrix
H such that

H(t—t')=(G(t,t')) . 4.7)

This in turn implies that after averaging Eq. (4.3) one can
take the Laplace transform to obtain the result
S (25,2

v,,(z)= (4.8)

The averaged LIN response matrix H(¢) defined by
Egs. (4.6) and (4.7) is formally identical to the propagator
describing excitons moving along a one-dimensional lat-
tice with random modulations of the local energy at each
lattice site [19]. (These modulations represent the effects
of a heat bath.) Therefore, as in Sec. II, we can use tech-
niques from nonequilibrium statistical physics to evaluate
H(z). In particular, following Sumi [19] we use a dynam-
ical coherent potential approximation to replace the ran-
dom fluctuations £,(¢) appearing in the matrix Q(z) of
Eq. (4.6) by an effective site-independent constant synap-
tic background A so that

H()~G()=exp(—1Q), O=Q©+A1 . 4.9)

The self-energy term A is determined by a self-
consistency condition, which ensures that any statistical
fluctuations at the single-site level are taken into account.

The derivation of the self-consistency condition for A
proceeds along analogous lines to [19]. First, write the
matrix Q(z) as

Qi (V=101

The background A is determined by the condition that
statistical fluctuations arising from the second term on
the right-hand side vanish at each single site. (Under the
coherent potential approximation one neglects multisite
correlations.) It then suffices to consider a LIN in which
temporal fluctuations occur at only one site or neuron,
n =0, say. The corresponding matrix Q is

+[E, (1) —A]S (4.10)

}mn'

0n (=0, +[£e() = A18,,08,0
=00+, 4.11)
with
Orn =Comn — N8B0 » 0 (1)=5(1)8,,08,0 - (4.12)

Introducing the modified average response matrix
e t
H(t)=(T - t')dt 4.1
(= [l ) @.13)
the self-consistency conditions for A takes the form [19]

(4.14)

exp

Hoo(1)=G (1) .

In order to determine the effective background A, we
still have to calculate the modified matrix H(¢) which de-
scribes the average response of a LIN with single-site
dynamical disorder. The latter can be achieved using an

PAUL C. BRESSLOFF 51

extension of the method of partial cumulants detailed in
Sec. II. First, we average the matrix Eq. (4.4) with Q re-
placed by Q using the operators ? and .£. This gives the
two matrix equations

—?G(tO —Q?PG(1,0)-PQM(1).LG(1,0)  (4.15)
and
%LG(t,O)— (Q9+L3M(1)]LG(1,0)
—QM(1)PG(1,0) . (4.16)

Solving for the quantity .£G(¢,0) by integrating Eq. (4.16)
and using the identity G(0,0)=1, we obtain the TC-
GME

i"' — — OOy 2 PV 5 V) ’
5 A0=—QHn+ [ K~ H"dr' (4.17)
where the memory operator K satisfies
K(1=1)=PQ (T |exp |~ [ 1@V +L£Q"()ar ]
¢
xQM(z") 4.18)

Since the random background is now assumed to im-
pinge on a single neuron alone (single-site modulation),
one finds that the memory operator matrix K(z) has a
single nonzero matrix element, that is,
K, (1)=K(2)8,, 08, 0. As in the scalar example of Sec.
II, K (¢) may be expanded in terms of the partial cumu-
lants (2.14)

)
t)—n_lf dty, ... fo dt c®(0,t,, ... 1ty —25t)
2n—1 __
X I Gool) » (4.19)
i=1
where
G(t)=exp(—tQ'?) . 4.20)

Since the ¢?® depend on the same set of time differences
7; as appears in the product on the right-hand side of Eq.
(4.19), the individual terms of the expansion (4.19) display
a multiconvolution form. Therefore, we can Laplace
transform Eq. (4.19) and after some rearrangement ex-

press k (z) as a continued fraction identical in form to Eq.
(3.12)

k(z)= rier S
(z+2) l : 62 29M
g(z+21) 7;26%
T gz +MA
4.21)
with
g(2)=Z0(2)=[8o(2) ' =A]17!, B(2)=8xp(z)  4.22)
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and g(z) is the Laplace transform of G(t), etc. The ma-
trix g(z) can be calculated explicitly by noting that G(z)
of Eq. (4.4) is the response matrix of a LIN with site-
independent background £,+ A. This means that Fourier
transforms with respect to spatial location can be taken.
The result is

. o eip(m —n) EP_

Emn(2)= f—nz+e+A+ W(p) 27’
where W (p) is defined by Eq. (3.6).

Having obtained the Laplace transform of the memory

operator, we can now proceed to solve Eq. (4.17). La-
place transforming both sides gives

h(z)=[z1+QV—k(z)]7'.

(4.23)

(4.24)

A series expansion and an application of Dyson’s equa-
tion then yields

(0) (0
~ — Zn0(2)k(2)g, (2)
h,,,(2)=gm,(2)+ 1=k (2)g (2) (4.25)
In particular, setting m =n =0,
Frog(z)=—82 (4.26)
0o 1—k(z)g(z)

Combining Eqgs. (4.26) and (4.22) with the Laplace trans-
form of (4.14) finally yields the following self-consistency
condition for the effective background A:

A=—k(z,A) . (4.27)

The dependence of k (z) on the background field through
presence of g (z) in Eq. (4.21) has been made explicit.

In conclusion, substituting Eq. (4.9) into (4.8) and
Fourier transforming using Eq. (4.23) yields the following
result: within a coherent potential approximation the
average transfer function of a recurrent LIN with ran-
dom modulation of each neuron by synaptic background
activity is

1
z+e+A)+W(p) '’

where A(z) is the solution to the self-consistency condi-
tion (4.27). Comparing with hy for a uniform back-
ground, we see that the effect of the background is p in-
dependent; this is to be expected since the background is
now spatially incoherent.

We shall now demonstrate that Eq. (4.27) yields a
unique nonzero solution for the effective background
satisfying A(z) <O0. First, consider the case M =1. Equa-
tions (4.21), (4.22), and (4.27) yield the self-consistency
condition

hg(z,p)= (4.28)

2

A=—ygz+r)=——-TL— 4.29)
re gz+A)"1—A
This is a quadratic in A which has the solution
A=% Ez+M) 1=V gz +A) "2 +4y2 | . (4.30)

[Only the negative square root is valid since we require
A(z)—0 as y—0.] Although g(z) itself depends on A

[Eq. (4.23)], it is clear from Eq. (4.30) that A(z) <O.
Next consider the case M =2. The self-consistency
condition now becomes

2y?
A=— - 3 . 4.31)
g(z+A) " —2y%g(z +2A)
Equation (4.22) and some algebra leads to the equation
A[1—=Ag(z+A)][1—Ag(z +21)]

=2y%8(z+A)[28(z +20M)A—1] .

(4.32)

By continuity from the solution A(z)=0 at y2=0, we see
that the only physical solution to Eq. (4.32) satisfies
A(z)<0. That is, when y2<<1 we find that |A| <<1 and
hence §(z+A)A <1, 28(z +2A)A < 1. Thus for small y?
the term in square brackets on the left-hand side of Eq.
(4.32) is positive while the right-hand side is negative,
which means that A <0. This solution remains negative
for all y2 Similarly, one can show that the effective
synaptic background is negative for any M. However, it
should be noted that the physical restriction My <&, im-
plies that ¥>—0 as M — . Thus within the constraints
of the model only low order dichotomous noise process
will give a significant effect. In all cases |A(z)| is a de-
creasing function of A.

A simple approximate expression for the effective
synaptic background A(z) can be obtained when the level
of lateral inhibition is small. More specifically, suppose
that the distribution of lateral connections is given by
W (p)=Wyexp(—p?) (see Sec. III) such that

o

— [ <1. .
T et A 1 (4.33)

We can then expand the denominator of Eq. (4.23) for
m =n =0 to obtain

> InWs
gz)=y (- 1)'—————, (4.34)
§2= 3 (Z+etA)y !
where
J =—l-fﬂ exp(—np?)dp = L erf(Vam) . (435
SY g Vdmrn

Thus to first order in W,

Al — 1 I\ Wy

8= A |V Zrera | *.36)
It follows from Eq. (4.36) that

gz) '=z+e+W,yJ, . 4.37)

Substituting Eq. (4.37) into Eq. (4.21) shows that the
effective background is A(z)=—k(z+ J,W,) where k (z)
is given by (2.15). [One can check that such a solution is
consistent with the condition (4.33) for W, sufficiently
small.] Hence, within this approximation the transfer
function of a recurrent LIN with nonuniform synaptic
background reduces to
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FIG. 8. Variation of effective background A(z) with ampli-
tude of inhibitory connections W, for z=0.0 and z =0.5.

1
h ( y )z — —

R G et W) —k(z + W)
| (4.38)

7
W= f_ﬂW(p)dp )

The fact that a nonuniform fluctuating background re-
sults in a p-independent contribution to the transfer func-
tion means that the contrast between high and low spatial
frequency responses is not as strong as for a spatially uni-
form background [see the discussion following Eq.
(3.11)]. The above approximation also implies that for
small W, and real z, the effective background |A(z)| de-
creases as W, increases. This in fact holds for all values
of W, as is illustrated in Fig. 8 where A(z) is plotted as a
function of W, for z=0.0 and z=0.5. The effective
background A(z) is obtained by numerically solving Eq.
(4.27) for M =1, e=1 and A=0.

Finally, note that we have considered two extremes
concerning the spatial distribution of background activity
across the lateral inhibitory network, namely uniform
(Sec. III) and completely random. Although more gen-
eral spatial distributions are harder to analyze we expect
that averaging over the fluctuating background leads to a
negative effective background contribution that generally
depends on both the spatial and temporal frequency of
response. The dependence on spatial frequency will only
disappear when spatial correlations of the background
activity across the network are absent, as in Sec. IV.

V. DISCUSSION

In this paper, we established a formal equivalence be-
tween a neuron with random synaptic background activi-
ty and a physical system in a heat bath. We then applied
techniques from nonequilibrium statistical physics such
as the method of partial cumulants and dynamical
coherent potential approximation to analyze how a fluc-
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tuating background influences the spatiotemporal pro-
cessing properties of lateral inhibitory neural networks.
Our main result is that averaging over the background
leads to an effective membrane time constant of the sys-
tem given by

= Alp),

Teff

where 7 is the time constant in the absence of any back-
ground activity, &, is the (constant) mean level of activity,
and A(w,p) is the contribution from background fluctua-
tions about the mean with A>0. Note that A will gen-
erally depend on both the spatial frequency p and the
temporal frequency o of response. Although we restrict-
ed ourselves to the case of dichotomous colored noise, we
could easily consider a more general process that interpo-
lates between dichotomous, Gaussian, and compound
Poisson processes [6].

There are two limitations concerning the present
analysis that should be noted. First, the networks were
assumed to be linear; although this is a reasonable ap-
proximation for small amplitude inputs, it is important to
develop techniques for analyzing the effects of back-
ground activity on nonlinear networks. For example, a
nonlinear extension of Eq. (3.2) is

dv, V,

dt T

= 2 WS (Vi () +x, ()

m¥n

+ (synaptic background) ,

where f is a sigmoidal output function of the form
f(x)=[1+exp(—kx)]~!. The object of interest is now
the average output { f(V,,)). One possible starting point
for the analysis of such nonlinear networks is to perform
a perturbation expansion in powers of the nonlinear gain
k. The second limitation of our analysis is that it only
determined the average response of the network. Thus
one imagines an ensemble of identical networks each with
an independent fluctuating background. This raises two
important issues: (i) What information is usefully ex-
tracted from such an ensemble beyond the average
response? (ii) How does one take into account statistical
correlations of background activity between elements of
the ensemble?

Finally, given that synaptic background activity can
influence the behavior of neurons along the lines illustrat-
ed in this paper, it is of interest to determine whether or
not there is some mechanism for controlling such back-
ground activity (by the release of neuromodulators?), and
if so, how this mechanism could be exploited by the sys-
tem. We hope to consider these particular issues else-
where.
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